Enrollment No. _

Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous)

Affiliated to Saurashtra University, Rajkot

SEMESTER END EXAMINATION APRIL – 2017

M. Sc. Chemistry

16PCECC08 – INTERPRETATIVE MOLECULAR SPECTROSCOPY (SSC)

Duration of Exam - 3 hrsSemester - IIMax. Marks - 70

<u>Part A</u> (5x2=10 marks)

Answer ALL questions

- 1. Enlist the IR absorption wavenumbers for C=O in acid, ketone, aldehyde, ester, anhydride and amide.
- 2. Differentiate 1-propanol and 2-propanol by CMR spectroscopy.

ii)

3. Identify the types of protons in the following compounds:

- 4. Calculate the chemical shift value of C_1 and C_2 carbon of 1-hexene.
- 5. Indicate the number of signals and multiplicity off-resonance decoupled ¹³C NMR spectra of the following compounds:
 - i) 2-bromopropane
 - ii) Ethylbenzene

$\frac{Part B}{Part B} (5X5 = 25 marks)$

Answer \underline{ALL} questions

- 6a. Calculate the chemical shift value of carbon of following compounds:
 - i) 3-bromotoluene ii) p-xylene
- OR
- 6b. Calculate the chemical shift value of carbon of following compounds:i) 1-hexeneii) 4-bromobenzaldehyde
- 7a. Differentiate 1-aminopropane and 2-aminopropane by PMR spectroscopy.

OR

- 7b. Differentiate 2-pentanone and 3-pentanone by PMR spectroscopy.
- 8a. How will you distinguish the following pairs of compounds on the basis of IR spectroscopy?
 - i) o-nitrophenol, m-nitrophenol and p-nitrophenol

ii) CH₃COOH and CH₃COCl

OR

- 8b. How will you distinguish the following pairs of compounds on the basis of IR spectroscopy?
 - i) ortho, meta and pera-xylene
 - ii) Benzyl alcohol and anisole

9a Deduce the structure of compound from the given analytical data.
MW: 264 g/mol Elements: C-36.3%, H-3.1%, Br-60.6%, NMR: a/singlet/20.0 square/7.4 δppm, b/triplet/20.5 square/3.6 δppm

OR

9b Deduce the structure of compound from the given analytical data.

MW: 102 g/mol Elements: C-70.5%, H-13.72%. NMR: a/triplet/6H/9.0 τppm, b/quintet/4H/8.5 τppm, c/multiplet/1H/7.8 τppm d/doublet/2H/6.1 τppm, e/singlet/1H/5.5 τppm

10a Deduce the structure of compound from the given analytical data.

MW: 158 g/mol Elements: C-60.8%, H-8.8%. IR: 2910(m), 1830(s), 1750(s), 1410(m), 1385(s), 1365(s), 1225(s), 710(m) cm⁻¹ NMR: a/Septate/2H/2.73 δppm, b/doublet/12H/1.20 δppm.

OR

10b Deduce the structure of compound from the given analytical data.

MF: C₁₂H₁₆O₂ IR: 3040, 2960, 2880, 1740, 1610, 1585, 1470, 1445, 1230,1030, 970, 760, 710 cm⁻¹ NMR: a/singlet/6H/1.0 δppm, b/singlet/2H/2.8 δppm, c/singlet/3H/3.8 δppm, d/multiplet/5H/7.5 δppm

<u>Part C</u> (5X7= 35 marks)

Answer <u>ALL</u> questions

11a. Calculate the chemical shift value of carbon of following compounds:

i) 2-flouropentane ii) 3-bromopentane iii) 4-chloroaniline

OR

11b. Calculate the chemical shift value of carbon of following compounds:

i) 3-methylpentane ii) 3-nitrobenzoic acid iii) 2-chlorobenzaldehyde

12a. Acetylation of following compounds were carried out with acetic anhydride in the presence of catalytic amount of Con. H_2SO_4 .

Among them one of the product ¹H NMR spectrum is given below. Identify the product and interpret it.

OR

12b. The Cyanation of following compounds were carried out with ethyl cyanoacetate in the presence of palladium catalyst.

Among them one of the product ¹H NMR (400 MHz) spectrum is given below. Identify the product and interpret it.

13a. Deduce the structure of compound from the given spectral data.

MF: $C_{10}H_{10}O$ IR: 3030, 2950, 1710, 1480, 1380, 750 and 700 cm⁻¹ PMR: (a/singlet/3H/7.8 τppm), (b/doublet/1H/3.8 τppm/J = 16.5 Hz), (c/doublet/1H/3.2 τppm/J = 16.5 Hz), (d/multiplet/5H/2.2-2.8 τppm), CMR (Proton noise decoupled): 8 signals

OR

13b. An organic compound with MF: $C_{10}H_{14}O$ furnished the following spectral data:

UV: 277 nm. IR: 3520, 3020, 2960, 2875, 1622, 1458, 1383, 1385, 1222, 852 and 804 cm⁻¹ PMR: δ 1.2 (6H, d), 2.2 (3H, s), 3.2 (1H, m), 4.2 (1H, s), 6.6 (1H, dd, *J* = 8 Hz), 6.9 (1H, dd, *J* = 8 Hz) and 7.2 (1H, dd, *J* = 2Hz). CMR (Off-resonance decoupled): Three singlet, four doublet and two quartet. Deduce the structure of the compound and explain the spectral data.

14a. Deduce the structure of compound from the given spectral data.

MF: C₉H₁₁NO IR: 3430, 3030, 2975, 1700, 1612, 1550, 1422, 1325, 1380 and 830 cm⁻¹ PMR: (a/singlet/3H/2.8 δ ppm), (b/singlet/3H/3.0 δ ppm), (c/multiplet/4H/6.7-7.7 δ ppm/*J* = 8 *Hz*), (d/singlet/1H/9.7 δ ppm), CMR (Proton noise decoupled): 7 signals

OR

14b. An organic compound having molecular weight 174 g/mol gave following spectral data:

MF: $C_{11}H_{13}NO$ IR: 3010, 2950, 2920, 2850, 2750, 1690, 1380, 1140 and 810 cm⁻¹ NMR: δ 2.9 (6H, s), 6.4 (1H, dd, J = 16 Hz), 6.8 (1H, d, J = 16 Hz), 7.2-7.4 (2H, d, J = 9 Hz), 7.7-7.9 (2H, d, J = 9 Hz) and 9.3 (1H, d). Deduce the structure of the compound and explain the spectral data.

15a. Deduce the structure of compound from the given spectral data.

MF: C₄H₆O

IR: 3010, 2950, 2860, 1790, 1690, 1550, 1440, 1380, 1010, 970 and 930 cm⁻¹ PMR: (a/doublet/3H/1.5 δ ppm), (b/multiplet/1H/6.0-6.2 δ ppm/J = 9 Hz), (c/double doublet/1H/6.7-6.9 δ ppm/J = 9 Hz), (d/doublet/1H/9.5 δ ppm), CMR (Off-resonance decoupled): one quartet and three doublet. MS: Prominent peaks at m/e 70, 69, 44, 41 and 29

- OR
- 15b. A compound containing C, H, O and Cl shows a strong IR absorption band near 1720 cm⁻¹ and a near 3200 cm⁻¹. Its PMR spectrum displays two triplets at δ 2.8 and 3.8 and a singlet at δ 12 in the intensity ratio 2: 2: 1, respectively. Deduce the structure of the compound.